বৃত্তাকার গতি এক ধরনের সরল দোলন গতি। অর্থাৎ বৃত্তাকার গতি সরল দোলন গতির বৈশিষ্ট্যগুলি মেনে চলে। এখন সরল দোলন গতি এবং বৃত্তাকার গতির মধ্যে সম্পর্ক স্থাপন করতে গিয়ে ৮-৫ চিত্র লক্ষ কর। মনে করি একটি বস্তুকণা A বিন্দু হতে যাত্রা শুরু করে ABCD বৃত্তাকার পথে ঘড়ির কাঁটার বিপরীত দিকে
সমকৌণিক বেগ -এ ঘুরছে [চিত্র ৮-৫(ক)। ধরি বৃত্তের কেন্দ্র এবং A বৃত্তের ব্যাসার্ধ। মনে করি । সময় পর বস্তুকণাটি । অবস্থানে আসল। এখন P বিন্দু হতে বৃত্তের BOD ব্যাসের উপর PN লম্ব অঙ্কন করি। N হবে লম্বটির পাদ বিন্দু।
মনে করি ON =y। চিত্রে OPN ত্রিভুজ থেকে পাওয়া যায়,
y = OP sin = A sin
যেহেতু কণাটি সমকৌণিক বেগে ঘুরছে, সুতরাং
-কে কণাটির দশা কোণ (phase angle) বা সংক্ষেপে দশা বলে।
এখন y = A sin = A sin কণাটি যখন বৃত্তাকার পথে ঘুরতে থাকে তখন ব্যাস BOD-এর উপর কণার পাদবিন্দু N ব্যাস BOD বরাবর স্পন্দিত হতে থাকে।
সুতরাং কণাটির বেগ,
অর্থাৎ কণাটির ত্বরণ এর সরণের সমানুপাতিক। সুতরাং N বিন্দুর গতি সরল ছন্দিত গতি। O হচ্ছে এই ছন্দিত গতির মধ্যবিন্দু বা সাম্যাবস্থান, B ও D ছদিত গতির প্রান্তীয় অবস্থান এবং P উৎপাদনকারী বিন্দু (generating point)। বৃত্তটির নাম নির্দেশক বৃত্ত (reference circle) এবং কণাটির নাম নির্দেশক কণা (reference particle) [চিত্র ৮-৫(ক)]।
লক্ষ করলে দেখা যাবে যে কণাটি বৃত্তাকার পথে যখন ABCDA পথে একবার ঘুরে আসে সেই সময় পাদবিন্দুটি OBODO ব্যাস বরাবর যাত্রা বিন্দু বা আদি বিন্দু থেকে শুরু করে একবার পদ্ম অতিক্রম শেষ করে আদি বিন্দুতে ফিরে আসে। কণাটির বৃত্তাকার পথে একবার ঘুরতে যে সময় লাগে তাই দোগন বা পর্যায়কাল T। ঐ সময় একই পাদবিন্দুও একবার পথ পরিক্রমা শেষ করে।